

Advanced Mathematics

December 2010

Time: 50 minutes + 5 minutes reading time

DIRECTIONS

- Full working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Use black or blue pen only (not pencils) to write your solutions.
- No liquid paper is to be used. If a correction is to be made, one line is to be ruled through the incorrect answer.
- Write your teacher's name and your name on the cover sheet provided
- At the end of the exam, staple your answers in order behind the cover sheet provided, and your questions on the back
- Approved Maths aids and calculators may be used

- /	Approved Maths aids and calculators may be used	
1.	Find a) $\int (3x-7)^{15} dx$	2
***************************************	b) $\int x\sqrt{x} dx$	2
	c) $\int_0^5 \frac{7x^4 - 1}{x^2} dx$	3
2.	Evaluate $\sum_{k=2}^{5} (4k+1)$	2
3.	Archie invests \$1500 at 6.24% per year compound interest, compounding quarterly. Calculate the value of the investment after 5 years.	2
4.	The sum of the first n terms of a certain arithmetic series is given by $S_n = \frac{n(3n+1)}{2}$ Find T_{17} .	2
5.	Find the number which when added to each of 2, 6 and 13 will give the first 3 terms of a geometric progression.	3
6.	The tenth term of an arithmetic sequence is 29, and the fifteenth term is 44. a) Find the value of the common difference and the value of T_1 . b) Find the sum of the first 75 terms.	3 2
7.	For the function $f(x)$, $\int_{1}^{6} f(x) dx = 7$ Hence, calculate $\int_{1}^{6} (f(x) + 3) dx$	2
8.	The following table lists the values of a function $y = f(x)$ for 3 values of x $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
WAS FIRST STATE OF THE STATE OF	a) Use Simpson's rule and these values to estimate $\int_{2.1}^{2.5} f(x) dx$ to 2 decimal places	2
миниминиминиминиминиминиминиминиминимин	b) By using the trapezoidal rule with three function values, find the approximate volume of the solid generated when the area enclosed between the curve $y = f(x)$, the x-axis and the lines $x = 2.1$ and $x = 2.5$ is rotated about the x-axis. Give your answer in terms of π .	3
9.	a) Express 0.14 as an infinite series b) Hence express 0.14 as a fraction with no common factors.	1 2

10.	To calculate the area of the region bounded by the curve $y = x^2 - 2x$ and	<u>.</u>
	the x-axis between $x = 0$ and $x = 3$, Harry used $\int_0^3 x^2 - 2x \ dx$	
	a) Explain why Harry's method of calculating this area is incorrect. b) Find the required area.	1 3
11.	In the diagram, the shaded region is bounded by the parabola $y = x^2 + 2$, the y-axis and the line $y = 6$ Find the volume of the solid formed when the shaded region is rotated about the y-axis	3
12.	The shaded region <i>OAB</i> is bounded by the parabolas $y = x^2$ and $y = 2 - x^2$ and the x-axis between $x = 0$ and $x = \sqrt{2}$	
	a) Find the coordinates of B b) Calculate the area OAB (2 decimal places)	1 3
13.	a) Joe invests a fixed amount, P at the beginning of each year into a superannuation fund for 10 years. The compound interest rate is 4%pa, compounded annually. By establishing a series, find the amount P, invested if the value of the superannuation account at the end of the 10 th year was \$89900, to the nearest dollar.	4
;	b) Joe then retires and intends to draw a set amount <i>M</i> from this fund each month. He finds a bank that offers him 4.8%pa on his lump sum compounding monthly and he expects to withdraw <i>M</i> for the next 15 years.	
	i) Show that at the end of the 2^{nd} month the amount remaining is $A_2 = 89900(1.004)^2 - M(1.004 + 1)$	1
	ii) Hence calculate M to the nearest dollar by first showing that $M = \frac{359.6(1.004)^{180}}{1.004^{180} - 1}$	3

~ END OF EXAM ~

150, 1.a) $\int (3x-7)^{15} dx = (3x-7)^{16} + c$ 0 $= \frac{(3x-7)^{1/4}}{48} + 0$ b) $\left(x^{\frac{3}{2}} dx = \frac{0}{2} x^{\frac{5}{2}} + c\right)$ c) $\int_{0}^{5} 7x^{2} - x^{-2} dx = \left[\frac{7x^{3}}{3} + \frac{1}{x} \right]_{0}^{5}$ $=\left(\frac{1\times5^{\circ}}{3}+\frac{1}{5}\right)-\left(\frac{7}{3}+1\right)$ = 288.53 2. $\sum_{i=1}^{4} (4k+i) = 9+13+17+21$ $\frac{=60}{3. A_{20} = 1500 \left(1 + \frac{0.0624}{4}\right)^{20}}$ =\$2044.30 (1) $5_n = \frac{n(3n+1)}{2}$ $S_{17} = \frac{17(3\times17+1)}{5}$ $S_{16} = \frac{16(3\times16+1)}{2}$ Ti7 = S17 - S16 = 442 - 392. = 50.

5, 2+x, 6+x, 13+x - G.P. $\frac{6+\pi}{2+\pi} = \frac{13+\pi}{6+\pi}$ $(6+x)^{2} = (13+x)(2+x)$ $36 + 12x + \chi^2 = 26 + 15x + \chi^2$ 10 = 3x $z = \frac{10}{3} \text{ (1)}$ 6. $T_{10} = 9 + 9d = 29$ D $T_{15} = 9 + 14d = 44$ sub into Tio a+27 =29 1a) Tis-Tio = 5d = 15 7. S. f(x) dx = 7 $\int_{1}^{b} (f(\alpha) + 3) d\alpha = 7 + \left[3x \right]_{1}^{b} \mathbb{O}$ = 7 + (18 - 3)= 22. 8. $\int_{2\pi}^{2\sqrt{5}} f(x) dx = \frac{0.2}{3} \left\{ 3 + 4 \times 3.8 + 4.2 \right\}$ =1,4902(2dp) $\frac{y \mid 3 \mid 3.8}{y^2 \mid 9 \mid 14.44 \mid 17.64} \quad V = TT \int_{2-1}^{2.8} y^2 \, dx \quad \boxed{1}$ $= \Pi \times \frac{0.2}{2} \times \left\{ 9 + 2 \times 14.44 + 17.64 \right\}$ = 5.552 TV3 A

or dec answar.

25/13 ...

